Superconvergence of the mixed nite element approximations to parabolic equations

نویسندگان

  • Hongsen Chen
  • Richard Ewing
  • Raytcho Lazarov
چکیده

Semidiscrete mixed nite element approximation to parabolic initial boundary value problems is introduced and analyzed Superconver gence estimates for both pressure and velocity are obtained The esti mates for the errors in pressure and velocity depend on the smoothness of the initial data including the limiting cases of data in L and data in H r for r su ciently large Because of the smoothing properties of the parabolic operator these estimates for large time levels esentailly coin side with the estimates obtained earlier for smooth solutions How ever for small time intervals we obtain the correct convergence orders for nonsmooth data

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-discrete Finite Element Approximations for Linear Parabolic Integro-di erential Equations with Integrable Kernels

In this paper we consider nite element methods for general parabolic integro-diierential equations with integrable kernels. A new approach is taken, which allows us to derive optimal L p (2 p 1) error estimates and superconvergence. The main advantage of our method is that the semidiscrete nite element approximations for linear equations, with both smooth and integrable kernels, can be treated ...

متن کامل

Finite Volume Element Approximations of Integro-differential Parabolic Problems

In this paper we study nite volume element approximations for two dimensional parabolic integro di erential equations arising in modeling of nonlocal reactive ows in porous media These types of ows are also called NonFickian ows and exhibit mixing length growth For simplicity we only consider linear nite vol ume element methods although higher order volume elements can be considered as well und...

متن کامل

Finite Volume Element Approximations of Nonlocal Reactive Flows in Porous Media

In this paper we study nite volume element approximations for two dimensional parabolic integro di erential equations arising in modeling of nonlocal reactive ows in porous media These type of ows are also called NonFickian ows with mixing length growth For simplicity we only consider linear nite volume element methods although higher order volume elements can be considered as well under this f...

متن کامل

Superconvergence of mixed nite element methods for parabolic problems with nonsmooth initial data

Semidiscrete mixed nite element approximation to parabolic initial boundary value problems is introduced and analyzed Superconvergence estimates for both pressure and velocity are obtained The estimates for the errors in pressure and velocity depend on the smoothness of the initial data including the limiting cases of data in L and data in Hr for r su ciently large Because of the smoothing prop...

متن کامل

Numerische Mathematik Manuscript-nr. Superconvergence of Mixed Nite Element Methods for Parabolic Problems with Nonsmooth Initial Data

A semidiscrete mixed nite element approximation to parabolic initial-boundary value problems is introduced and analyzed. Superconvergence estimates for both pressure and velocity are obtained. The estimates for the errors in pressure and velocity depend on the smoothness of the initial data including the limiting cases of data in L 2 and data in H r , for r suuciently large. Because of the smoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994